Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Journal of Pharmaceutical Analysis ; (6): 11-23, 2023.
Article in Chinese | WPRIM | ID: wpr-991121

ABSTRACT

Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)-induced cytokine storms constitute the primary cause of coronavirus disease 19(COVID-19)progression,severity,criticality,and death.Gluco-corticoid and anti-cytokine therapies are frequently administered to treat COVID-19,but have limited clinical efficacy in severe and critical cases.Nevertheless,the weaknesses of these treatment modalities have prompted the development of anti-inflammatory therapy against this infection.We found that the broad-spectrum anti-inflammatory agent inosine downregulated proinflammatory interleukin(IL)-6,upregulated anti-inflammatory IL-10,and ameliorated acute inflammatory lung injury caused by mul-tiple infectious agents.Inosine significantly improved survival in mice infected with SARS-CoV-2.It indirectly impeded TANK-binding kinase 1(TBK1)phosphorylation by binding stimulator of interferon genes(STING)and glycogen synthase kinase-3β(GSK3β),inhibited the activation and nuclear trans-location of the downstream transcription factors interferon regulatory factor(IRF3)and nuclear factor kappa B(NF-κB),and downregulated IL-6 in the sera and lung tissues of mice infected with lipopoly-saccharide(LPS),H1N1,or SARS-CoV-2.Thus,inosine administration is feasible for clinical anti-inflammatory therapy against severe and critical COVID-19.Moreover,targeting TBK1 is a promising strategy for inhibiting cytokine storms and mitigating acute inflammatory lung injury induced by SARS-CoV-2 and other infectious agents.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 96-108, 2023.
Article in Chinese | WPRIM | ID: wpr-979454

ABSTRACT

ObjectiveThis study aims to investigate the effect of modified Baitouwengtang (MBTWD) on tumor growth and the number of tumor-associated macrophages (TAMs) in tumor tissue of MC38 cell tumor-bearing mice with colorectal cancer and explores whether MBTWD mediates the remodeling of TAM phenotype to play an immunologically antitumor effect. MethodFirstly, The C57BL/6 mouse tumor model grafted subcutaneously was established, and then model mice were classified into a model group, positive control group(3 mg·kg-1), and MBTWD groups with high and low dosages(23.43、46.86 g·kg-1), with 10 mice in each group. In addition, 10 healthy mice were set as the blank group, and the changes in body weight, tumor volume, and survival status of mice in each group were observed. Tumor tissue, spleen, and peripheral blood were collected to calculate the tumor volume change, tumor inhibition rate, and spleen mass. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of tumor tissue, and an immunofluorescence assay was used to detect the expression levels of CD4, CD8, and CD206 in tumor tissues of tumor-bearing mice. The secretion levels of transforming growth factor (TGF)-β, interleukin (IL)-6, and chemokine (C-C Motif) ligand 2 (CCL2) in peripheral serum were measured by using enzyme-linked immunosorbent assay (ELISA). Secondly, a co-culture model induced by IL-4 in vitro of MC38 cells and murine monocytic macrophage RAW264.7 cells was established. Cell proliferation and activity assay (CCK-8) was used to detect the inhibitory effect of MBTWD containing serum on cell proliferation. A transwell experiment was used to detect the effect of IL-4-induced M2 macrophages on the invasion of MC38 cells. Flow cytometry was used to detect the expression of CD86 on the membrane of M2 macrophages induced by IL-4 with MBTWD containing serum. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the effect of MBTWD containing serum on the mRNA expression levels of M1 macrophage-related polarization factors CD86, nitric oxide synthase (iNOS), and IL-12, as well as M2 macrophage-related polarization factors CD206, CD163, and IL-10 after co-cultivation. Finally, the protein expression levels of colony-stimulating factor 1 receptor (CSF1R), stimulator of interferon genes (STING), and TANK binding kinase 1 (TBK1) in tumor tissues of tumor-bearing mice were detected by Western blot. ResultIn vivo experimental results show that compared with the model group, the MBTWD can significantly inhibit the tumor growth of tumor-bearing mice. Immunofluorescence experiments show that the MBTWD can increase the number of CD8+ T cell infiltration in tumor tissue of tumor-bearing mice, reduce the number of CD206+ TAMs infiltration, and down-regulate the secretion levels of cytokines IL-6, TGF-β, and CCL2 in peripheral blood of tumor-bearing mice. The results of in vitro experiments show that the MBTWD containing serum has no obvious inhibitory effect on cell proliferation, but the cell supernatant after co-cultivation with RAW264.7 cells can inhibit the proliferation activity of MC38 cells, and the invasion ability of MC38 cells is enhanced by IL-4-induced M2 macrophages. However, this effect can be inhibited in a concentration-dependent manner by the MBTWD containing serum. At the same time, the results of Real-time PCR show that the MBTWD containing serum can up-regulate the mRNA expression levels of M1 macrophage-related polarization factors CD86, iNOS, and IL-12 and down-regulate those of M2 macrophage-related polarization factors CD206, CD163, and IL-10. Flow cytometry results also confirm that the MBTWD containing serum can increase the number of repolarized CD86+ M1 macrophages, indicating that MBTWD can induce M2 macrophages to repolarized M1 macrophages to play an anti-tumor growth role. Finally, Western blot results show that MBTWD can down-regulate the expression of CSF1R protein and up-regulate that of STING and TBK1 proteins in tumor tissue of tumor-bearing mice. ConclusionMBTWD can down-regulate the infiltration number of CD206+ TAMs and increase the infiltration of CD8+ T cells, thereby playing an immunologically antitumor effect on the growth inhibition of colorectal cancer, which may be related to regulating CSF1R signaling and then activating STING/TBK1 signaling pathway to induce phenotypic remodeling of TAMs.

3.
Protein & Cell ; (12): 37-50, 2023.
Article in English | WPRIM | ID: wpr-971609

ABSTRACT

The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.


Subject(s)
Animals , Mice , Antiviral Agents/pharmacology , COVID-19 , Hepatitis B virus , Interferon Type I/metabolism , SARS-CoV-2/drug effects , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/antagonists & inhibitors
4.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 208-213, 2023.
Article in Chinese | WPRIM | ID: wpr-1005746

ABSTRACT

【Objective】 To explore the expression and role of stimulator of interferon gene (STING)-TANK-binding kinase 1 (TBK1)-interferon regulatory factor 3 (IRF3) signaling pathway in the brain of chronic stress mice. 【Methods】 Mice were divided into control (CON) group and chronic restraint stress (RST) group. Mice in the RST group were given chronic restraint stress stimulation (6 hours per day, 14 days). After 14 days, the mRNA expressions of pro-inflammatory cytokines CCL2, CXCL10, IL-1β, IL-6, IL-10, and TNFα in the brain were detected and analyzed by qRT-PCR; protein expression of STING, TBK1, p-TBK1, IRF3, and p-IRF3 were detected and analyzed by immunofluorescence staining and Western blotting. 【Results】 Compared to the CON group, the mRNA expressions of pro-inflammatory cytokines in the RST group were significantly increased (P<0.05). STING and microglia marker Iba-1 were highly co-located and the expression of STING was decreased as detected by immunofluorescence staining. Moreover, the protein expressions of STING, p-TBK1, and p-IRF3 were significantly decreased (all P<0.01). 【Conclusion】 Chronic restraint stress triggers a neuroinflammatory response and the STING-TBK1-IRF3 pathway in the brain of the RST mice is significantly inhibited.

5.
Protein & Cell ; (12): 261-278, 2021.
Article in English | WPRIM | ID: wpr-880901

ABSTRACT

TANK-binding kinase 1 (TBK1), a core kinase of antiviral pathways, activates the production of interferons (IFNs). It has been reported that deacetylation activates TBK1; however, the precise mechanism still remains to be uncovered. We show here that during the early stage of viral infection, the acetylation of TBK1 was increased, and the acetylation of TBK1 at Lys241 enhanced the recruitment of IRF3 to TBK1. HDAC3 directly deacetylated TBK1 at Lys241 and Lys692, which resulted in the activation of TBK1. Deacetylation at Lys241 and Lys692 was critical for the kinase activity and dimerization of TBK1 respectively. Using knockout cell lines and transgenic mice, we confirmed that a HDAC3 null mutant exhibited enhanced susceptibility to viral challenge via impaired production of type I IFNs. Furthermore, activated TBK1 phosphorylated HDAC3, which promoted the deacetylation activity of HDAC3 and formed a feedback loop. In this study, we illustrated the roles the acetylated and deacetylated forms of TBK1 play in antiviral innate responses and clarified the post-translational modulations involved in the interaction between TBK1 and HDAC3.

6.
Chinese Journal of Biotechnology ; (12): 1189-1204, 2021.
Article in Chinese | WPRIM | ID: wpr-878624

ABSTRACT

The innate immune system initiates innate immune responses by recognizing pathogen-related molecular patterns on the surface of pathogenic microorganisms through pattern recognition receptors. Through cascade signal transduction, it activates downstream transcription factors NF-κB and interferon regulatory factors (IRFs), and then leads to the production of inflammatory cytokines and type Ⅰ interferon, which resists the infection of pathogenic microorganism. TBK1 is a central adapter protein of innate immune signaling pathway and can activate both NF-κB and IRFs. It is a key protein kinase in the process of anti-infection. The finetuning regulation of TBK1 is essential to maintain immune homeostasis and resist pathogen invasion. This paper reviews the biological functions and ubiquitin modification of TBK1 in innate immunity, to provide theoretical basis for clinical treatment of pathogenic infections and autoimmune diseases.


Subject(s)
Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Ubiquitin
7.
International Eye Science ; (12): 436-441, 2021.
Article in Chinese | WPRIM | ID: wpr-873439

ABSTRACT

@#In recent years, considerable progress has been made in the study of glaucoma, especially primary open angle glaucoma(POAG). A series of POAG genes has been identified through genetic linkage analysis and genome-wide association studies(GWAS), which significantly advanced the study of glaucoma genetics. The latest perspective suggests that glaucoma is a disease of the central nervous system(CNS). A large number of basic clinical studies have demonstrated the close association between CNS disease and glaucoma. Among these studies, discoveries related to genetics are of prominence.

8.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 1-6, 2020.
Article in Chinese | WPRIM | ID: wpr-817625

ABSTRACT

@#TANK- binding kinase 1(TBK1)acts as the hub of antiviral innate immune signal transduction. On the one hand,TBK1 could be activated by a variety of pattern recognition receptors(PRR). On the other hand,as a critical kinase,activated TBK1 phosphorylates varieties of substrates,such as transcription factors interferon regulatory factor 3(IRF3)and IRF7 ,resulting in the initiation of antiviral innate immune responses. In this review ,we put emphasis on the TBK1 associated antiviral innate immune signaling ,as well as the regulation mechanisms of TBK1 expression and activation.

9.
Chinese Journal of Cancer Biotherapy ; (6): 204-208, 2020.
Article in Chinese | WPRIM | ID: wpr-815614

ABSTRACT

@# 非经典信号通路IKKε和TBK1与恶性肿瘤密切相关,多种因素激活IKKε和TBK1通路,可引起NF-κB途径的激活, 导致肿瘤细胞的凋亡减少、细胞周期加快,促进肿瘤发生和发展。抑制IKKε和TBK1信号通路,可增加多种细胞凋亡因子的表 达,抑制肿瘤细胞增殖,促进肿瘤细胞凋亡,同时提高化疗和放疗的敏感性。因此,阻断IKKε和TBK1信号通路可有效治疗恶性 肿瘤,已有的实验证实有多种阻断IKKε和TBK1通路的药物均具有良好的抗肿瘤作用。

10.
Chinese Journal of Neurology ; (12): 202-208, 2019.
Article in Chinese | WPRIM | ID: wpr-745914

ABSTRACT

Objective To report a case of frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS),review the relevant literature and then summarize the clinical and genetic characteristics of FTD-ALS patients.Methods A FTD-ALS patient admitted to the First Affiliated Hospital,Anhui Medical University in May 2017.After diagnosis,genetic analyses were performed on DNA extracted from peripheral blood of the patient and his first-degree relatives.Chinese FTD-ALS patients reported in detail were reviewed and the clinical and genetic characteristics of the disease were summarized.Results The patient,a 49-year-old man,responded slowly with impaired confrontation naming and impaired single-word comprehension.Magnetic resonance imaging showed temporal lobe atrophy.Besides,the patient gradually developed atrophy in limbs and bulbar muscles as well as spasticity of arms and legs,with positive pathological and primitive reflexes.Electromyography suggested a wide range of neurogenic changes,which were consistent with the FTD-ALS diagnostic criteria.A new heterozygous mutation (c.1335G>A chr12:64879792 p.W445X) was found in the TBK1 gene.The reference to the American College of Medical Genetics and Genomics guidelines suggested that this mutation type is likely pathogenic,which has not been reported by the Human Gene Mutation Database.There were a total of 21 Chinese FTD-ALS patients (including this case) reported in detail,including 13 males and eight females.The age of onset was (59.01±8.58) (44-73) years.Most of them had typical manifestations of FTD as the first symptom,followed by ALS.Among these patients,seven had genetic data analyses,five of which had positive results.The mutations occurred in TBK1 (two cases),C9onf72 (one case),DCTN1 (one case) and TARDBP (one case)genes,respectively.Most FTD-ALS cases were sporadic (including this case),and only two cases were familial.Conclusions FTD-ALS is a relatively rare disease,mostly sporadic,with a younger onset age,in which behavioral variant FTD is the main manifestation of dementia in the context of ALS,and cognitive impairment is occurred earlier than ALS.In addition to C9orf72 gene,TBK1 gene is an important pathogenic gene of FTD-ALS.Genetic analysis is of great value in the early diagnosis of FTD-ALS.

11.
Chinese Journal of Radiological Medicine and Protection ; (12): 28-34, 2015.
Article in Chinese | WPRIM | ID: wpr-466245

ABSTRACT

Objective To investigate the role of miR-203 in radiation-induced thymic lymphoma (RITL).Methods A 60Co irradiator was used for total-body irradiation.MicroRNAs(miRNAs) level was assayed by qRT-PCR.Cell proliferation was assayed by MTT assay.Cell apoptosis was examined by fluorescence activated cell sorter (FACS).Dual luciferase reporter assay system was used to detect the 3'UTR reporter.Results MiR-203 was down-regulated in RITL tissues.Overexpression of miR-203 strongly inhibited the proliferation of both NIH3T3 cells and EL4 cells and vice versa.MiR-203 inhibited cells proliferation and induced apoptosis via TANK-binding kinase (TBK1),SLUG (SNAI2) and Cyclin D1 (CCND1).Conclusions Radiation down-regulated the level of miR-203 in thymic,which promoted radiation-induced thymic lymphoma by targeting TBK1,SNAI2 and CCND1.

12.
Yonsei Medical Journal ; : 379-392, 2011.
Article in English | WPRIM | ID: wpr-95682

ABSTRACT

Pattern recognition receptors (PRRs) in innate immune cells play a pivotal role in the first line of host defense system. PRRs recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) to initiate and regulate innate and adaptive immune responses. PRRs include Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs), which have their own features in ligand recognition and cellular location. Activated PRRs deliver signals to adaptor molecules (MyD88, TRIF, MAL/TIRAP, TRAM, IPS-1) which act as important messengers to activate downstream kinases (IKK complex, MAPKs, TBK1, RIP-1) and transcription factors (NF-kappaB, AP-1, IRF3), which produce effecter molecules including cytokines, chemokines, inflammatory enzymes, and type I interferones. Since excessive PRR activation is closely linked to the development of chronic inflammatory diseases, the role of intrinsic and extrinsic regulators in the prevention of over- or unnecessary activation of PRRs has been widely studied. Intracellular regulators include MyD88s, SOCS1, TOLLIP, A20, and CYLD. Extrinsic regulators have also been identified with their molecular targets in PRR signaling pathways. TLR dimerization has been suggested as an inhibitory target for small molecules such as curcumin, cinnamaldehyde, and sulforaphane. TBK1 kinase can be a target for certain flavonoids such as EGCG, luteolin, quercetin, chrysin, and eriodictyol to regulate TRIF-dependent TLR pathways. This review focuses on the features of PRR signaling pathways and the therapeutic targets of intrinsic and extrinsic regulators in order to provide beneficial strategies for controlling the activity of PRRs and the related inflammatory diseases and immune disorders.


Subject(s)
Humans , Adaptive Immunity , Gene Expression Regulation , Immunity, Innate , Models, Immunological , Receptors, Pattern Recognition/genetics , Signal Transduction , Toll-Like Receptors/genetics , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL